ПОИСК ПО САЙТУ


ГОСТЕВАЯ КНИГА
О центре
Изменение климата
Сохранение озонового слоя
УПЦ Климат-Озон
Пути решения
Позиции Казахстана
Инвентаризация ПГ
Ссылки
Публикации
Расплавленный аккумулятор спасёт зелёное электричество

Расплавленный аккумулятор спасёт зелёное электричество

10 марта 2009
подготовленопо материалам membrana

Известный изобретательский приём – превратить недостаток конструкции в достоинство, заставить мешающее свойство системы работать на пользу дела. На этот раз подобный фокус позволил построить экзотический электрохимический аккумулятор, который не боится гигантской нагрузки и в котором попросту нечему ломаться.

Дональд Сэдовей (Donald Sadoway) и его коллеги из Массачусетского технологического института (MIT) придумали оригинальный способ аккумулирования электрической энергии, который позволит городам и весям работать от солнца ночью или от ветра в штиль.

Имеющихся вариантов такого хранения не так уж и много. Первое, что приходит на ум, — гидроаккумулирующая электростанция (о ней мы рассказывали среди прочего в этом материале). Простая и надёжная система, обладающая множеством достоинств. Недостаток по большому счёту один, но существенный, — не во всякой местности такую построишь, да и занимать она будет большую площадь.

Постоянные читатели "Мембраны" могут припомнить одно примечательное изобретение профессора Сэдовея - метод <a href="http://www.membrana.ru/lenta/?6369">производства стали электролизом</a>. Вот и в новом проекте американец воспользовался своими знаниями в области электрохимии (кадр с сайта technologyreview.com).

Постоянные читатели "Мембраны" могут припомнить одно примечательное изобретение профессора Сэдовея – метод производства стали электролизом. Вот и в новом проекте американец воспользовался своими знаниями в области электрохимии (кадр с сайта technologyreview.com).

Ещё можно "переплавлять" энергию ветра в водород. Не для применения в качестве топлива (в автомобилях), а только как временное хранилище электричества. Такая система может быть вполне эффективной с точки зрения энергетики, но, увы, она очень дорога.

Сравнительно свежая идея запасания "ветра" в огромных холодильниках, напротив, почти не требует капитальных затрат. Так что может найти некое применение. Но едва ли — как единственное или хотя бы главное средство хранения энергии.


Перспективны и супермаховики. Да, мы знаем, говорят об этом не одно десятилетие. Но только в последнее время стали появляться действительно работоспособные проекты, демонстрирующие возможности стационарных маховичных накопителей на практике (об одном из них мы говорили подробно).


И ещё есть всякие редкости, типа закачки сжатого воздуха в подземные полости.

Гидроаккумулирующая электростанция по внешнему виду может быть неотличима от обычной ГЭС, стоящей на реке, а может представлять собой такой вот необычный резервуар, как станция Taum Sauk в Миссури. В любом случае - это большая территория и большие объёмы строительства (фотографии с сайта ameren.com).

Гидроаккумулирующая электростанция по внешнему виду может быть неотличима от обычной ГЭС, стоящей на реке, а может представлять собой такой вот необычный резервуар, как станция Taum Sauk в Миссури. В любом случае – это большая территория и большие объёмы строительства (фотографии с сайта ameren.com).

Всякий способ хорош по-своему, и ни один не является идеальным. Сэдовей же предлагает: давайте вернёмся к химическим аккумуляторам. Только необычным – расплавленным.


Вообще-то так называемые горячие аккумуляторы изобретены не вчера. Существует множество их разновидностей, обладающих завидными удельными показателями. Только вот рабочая температура в сотни градусов накладывает ограничения на условия применения, да и в плане долговечности создаёт проблемы.


Мы говорим, к примеру, о таких известных технологиях, как серно-натриевые батареи (NaS battery) и родственные им аккумуляторы типа ZEBRA. Первые нашли применение как раз в качестве стационарных хранилищ промышленного электричества (но число таких станций можно пересчитать по пальцам), а вторые — в ряде мелкосерийных электромобилей.

 

17 крупных блоков серно-натриевых горячих батарей развивают мощность 34 мегаватта. В низком здании на заднем плане расположены преобразователи переменного/постоянного тока, через которые этот супераккумулятор подключён к сети. Данный комплекс - часть новой ветровой фермы Futamata, работающей в японской префектуре Aomori, а горячие батареи существенно сглаживают неравномерность выработки электричества от ветряков, покрывая дневной пик потребления и накапливая энергию ночью (фото с сайта techon.nikkeibp.co.jp). 17 крупных блоков серно-натриевых горячих батарей развивают мощность 34 мегаватта. В низком здании на заднем плане расположены преобразователи переменного/постоянного тока, через которые этот супераккумулятор подключён к сети. Данный комплекс – часть новой ветровой фермы Futamata, работающей в японской префектуре Aomori, а горячие батареи существенно сглаживают неравномерность выработки электричества от ветряков, покрывая дневной пик потребления и накапливая энергию ночью (фото с сайта techon.nikkeibp.co.jp).

 

И те и другие виды обладают рядом врождённых недостатков, сдерживающих их распространение. А вот новый аккумулятор, прототип которого уже создан в массачусетском институте, должен оказаться втрое дешевле лучших сегодняшних батарей, намного долговечнее всех прочих и, главное, – существенно мощнее, радуются изобретатели.

Такой аккумулятор размером с мусорный бак на 150 литров, рассуждает Сэдовей, мог бы стать непременным элементом "зелёного" дома, обеспечивая все его потребности в энергии даже на пике потребления, а подзаряжался бы он от переменчивых ветряков и солнечных панелей. Главное же – крупные собрания аккумуляторов нового типа могли бы запасать огромные количества энергии от альтернативных станций, питая целые посёлки и даже города.

Так, прогнозирует американский учёный, новая аккумулирующая станция мощностью в 13 гигаватт (то есть — на мегаполис) заняла бы площадь всего в 60 тысяч квадратных метров.

За счёт чего такие параметры? Эти батареи способны отдавать и принимать в десять раз больший ток, чем все существующие типы химических аккумуляторов, поясняет изобретатель.

Всё дело в электродах. Вспомним, создатели, к примеру, литиево-ионных элементов как только не изощряются, чтобы поднять допустимый ток, проходящий через электроды. И материалы подбирают необычные, и добавки разные, и даже нанотехнологии подключают. Со свинцово-кислотными батареями дело обстоит схожим образом.

В обычном аккумуляторе, например в свинцово-кислотном, материалы электродов накладывают ограничения на параметры впитываемого или отдаваемого тока. Они же во многом определяют срок службы устройства (иллюстрация Arthur Mount).В обычном аккумуляторе, например в свинцово-кислотном, материалы электродов накладывают ограничения на параметры впитываемого или отдаваемого тока. Они же во многом определяют срок службы устройства (иллюстрация Arthur Mount).

И всё равно – слишком сильный ток может повредить устройство, попросту расплавив всю конструкцию. Сэдовей нашёл выход: пусть расплавленное состояние будет нормальным для всех частей батареи. Тогда ничего в ней "неожиданно" расплавиться не сможет и дело в шляпе.

В расплавленных горячих аккумуляторах типа NaS или ZEBRA есть помимо корпусов и контактов по меньшей мере ещё один важнейший нерасплавленный элемент — твёрдый электролит (это специальная керамика, проводящая ионы натрия). А в аккумуляторе Сэдовея твёрдых частей во внутренностях вообще нет. Никаких. В этой батарее (не считая внешнего корпуса, что очевидно) всё жидкое — и электролит, и оба электрода!

Как же они не смешиваются между собой? Гениально просто — благодаря разной плотности. Точно так же, как не смешиваются масло и вода в давно стоящем стакане, пока его не встряхнёшь или не поболтаешь в нём ложкой. Но, как мы уже знаем, свою новую батарею Дональд "сватает" энергетикам в качестве стационарного накопителя энергии. Так что проблемы перемешивания жидкостей тут не возникнет.

Аккумулятор, придуманный Дональдом и его соратниками по институту, представляет собой тугоплавкий "стакан" (он же – первый выходной контакт), накрытый крышкой (это второй контакт). Между ними – диэлектрик, а вокруг – теплоизолирующая оболочка.

На дно этой ёмкости авторы конструкции поместили сурьму (это первый электрод в системе), следующий слой – сульфид натрия (электролит), а на самом верху – магний (второй электрод). Всё – в расплавленном виде. Причём в электролите также растворён антимонид магния.

В таком виде аккумулятор готов к приёму тока. По мере того как устройство заправляется энергией извне, положительно заряженные ионы магния в электролите забирают электроны из сети и формируют нейтральные атомы, которые присоединяются к верхнему электроду. Отрицательные ионы сурьмы, напротив, отдают свои электроны и также формируют нейтральные атомы, которые опускаются вниз, присоединяясь к электроду из сурьмы соответственно.

Итак, при заряде прослойка электролита в жидкой батарее тает, а расплавленные электроды – растут.

Схема работы нового жидкого аккумулятора. Слева - устройство готово к приёму заряда. В центре - зарядка батареи. Справа - полностью заряженный электрохимический элемент. Синим цветом показан слой магния, зелёным - электролит, жёлтым - сурьма (иллюстрация Arthur Mount).


Схема работы нового жидкого аккумулятора. Слева – устройство готово к приёму заряда. В центре – зарядка батареи. Справа – полностью заряженный электрохимический элемент. Синим цветом показан слой магния, зелёным – электролит, жёлтым – сурьма (иллюстрация Arthur Mount).

А при разряде аккумулятора всё происходит в обратном порядке: отдавая ток в нагрузку, материал электродов (в виде ионов) растворяется в электролите, формируя там антимонид магния и заставляя тем самым центральный слой расти. Сами же электроды обратно сокращаются.

Это довольно необычный принцип работы для химических аккумуляторов. Зато такая система готова выдержать огромное число циклов, она может отдавать и принимать гигантские токи без повреждений. И все компоненты такого аккумулятора – недороги. А поставить такие системы можно хоть в чистом поле, хоть в городе.

Сэдовей и его коллеги построили опытный образец расплавленной батареи. Её удельная ёмкость, правда, получилась не особо впечатляющей. Причина: экспериментаторам не удалось растворить антимонид магния в электролите в достаточно высокой концентрации. Но это не столь уж критично – для стационарного применения масса системы не слишком важна.

К тому же учёные полагают, что все ключевые показатели новой батареи можно будет серьёзно улучшить, подобрав иные металлы и соли, но сохранив полностью принцип работы такого аккумулятора.

До коммерческого варианта его можно довести в течение пяти лет, предсказывает Сэдовей. И это не столь уж много, учитывая, к примеру, что горячие аккумуляторы прежних типов, хотя и изобретены очень давно, до сих пор упорно совершенствуются рядом фирм и всё ещё числятся среди экзотики.

инвестиции по предотвращению изменения климата. Уполномоченный национальный орган
Правила и процедуры подготовки и одобрения проектов.
Методологии
Примеры подготовки Проектной идеи (PIN)
Информация для разработчиков проектов
Нормативно-правовая база
Другое

Наша кнопка:

Координационный центр по изменению климата

Click for Astana, Kazakhstan Forecast

Комплексное сохранение водно-болотных угодий Казахстана

Ртутное загрязнение в Павлодаре

Locations of visitors to this page

Rambler's Top100